當(dāng)前位置:首頁(yè) > 科技文檔 > 數(shù)學(xué) > 正文

基于GPR模型的用戶(hù)量預(yù)測(cè)優(yōu)化方法

系統(tǒng)工程與電子技術(shù) 頁(yè)數(shù): 9 2024-05-20
摘要: 高斯過(guò)程回歸(Gaussian process regression, GPR)是一種基于高斯過(guò)程的非參數(shù)化貝葉斯回歸方法,其可以靈活適應(yīng)不同類(lèi)型數(shù)據(jù),用于建模和預(yù)測(cè)數(shù)據(jù)之間的復(fù)雜關(guān)系,具有擬合能力強(qiáng)、泛化能力好等特點(diǎn)。針對(duì)海量用戶(hù)場(chǎng)景下用戶(hù)量實(shí)時(shí)預(yù)測(cè)問(wèn)題,提出一種基于GPR的用戶(hù)量預(yù)測(cè)優(yōu)化方法。在滑動(dòng)窗口方法處理數(shù)據(jù)的基礎(chǔ)上,選擇合適的核函數(shù),基于k折交叉驗(yàn)證得到最佳超參數(shù)組... (共9頁(yè))

開(kāi)通會(huì)員,享受整站包年服務(wù)立即開(kāi)通 >
科技文檔
數(shù)學(xué) 力學(xué) 化學(xué) 金融 證券 保險(xiǎn) 投資 會(huì)計(jì) 審計(jì) 園藝 林業(yè) 旅游 體育 物理學(xué) 生物學(xué) 天文學(xué) 氣象學(xué) 海洋學(xué) 地質(zhì)學(xué) 新能源 金屬學(xué) 農(nóng)藝學(xué) 農(nóng)作物 管理學(xué) 領(lǐng)導(dǎo)學(xué) 自然科學(xué) 系統(tǒng)科學(xué) 資源科學(xué) 無(wú)機(jī)化工 有機(jī)化工 燃料化工 化學(xué)工業(yè) 材料科學(xué) 礦業(yè)工程 冶金工業(yè) 安全科學(xué) 環(huán)境科學(xué) 工業(yè)通用 機(jī)械工業(yè) 無(wú)線(xiàn)電子 電信技術(shù) 鐵路運(yùn)輸 汽車(chē)工業(yè) 船舶工業(yè) 動(dòng)力工程 電力工業(yè) 農(nóng)業(yè)科學(xué) 農(nóng)業(yè)工程 植物保護(hù) 動(dòng)物醫(yī)學(xué) 教育理論 學(xué)前教育 初等教育 中等教育 高等教育 職業(yè)教育 成人教育 自然地理 地球物理 經(jīng)濟(jì)統(tǒng)計(jì) 農(nóng)業(yè)經(jīng)濟(jì) 工業(yè)經(jīng)濟(jì) 交通經(jīng)濟(jì) 企業(yè)經(jīng)濟(jì) 文化經(jīng)濟(jì) 信息經(jīng)濟(jì) 貿(mào)易經(jīng)濟(jì) 財(cái)政稅收 市場(chǎng)研究 科學(xué)研究 互聯(lián)網(wǎng) 自動(dòng)化 輕工業(yè) 核科學(xué) 服務(wù)業(yè) 石油然氣 服務(wù)業(yè) 野生動(dòng)物 水產(chǎn)漁業(yè) 硬件 儀器儀表 航空航天 武器軍事 公路運(yùn)輸 水利水電 建筑科學(xué) 軟件